LABO-RRI- ... S, LABO-RRI- ... I, LABO-RRI- ... U, LABO-RRI- ... F, LABO-RRI- ... C, LABO-RRH- ... S, LABO-RRH- ... I, LABO-RRH- ... U, LABO-RRH-... F, LABO-RRH- ... C, LABO-RR-032-S, LABO-

RR-032-I, LABO-RR-032-U, LABO-RR-032-F

Роторные индикаторы и датчики потока **GHM MESSTECHNIK**

Технические характеристики

Архангельск (8182)63-90-72 Иваново (4932)77-34-06 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Курск (4712)77-13-04

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61

Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Калининград (4012)72-03-81 Набережные Челны (8552)20-53-41 Самара (846)206-03-16 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04

Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Санкт-Петербург (812)309-46-40 Тюмень (3452)66-21-18 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31

Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47 Казахстан (772)734-952-31 Таджикистан (992)427-82-92-69

http://ghm.nt-rt.ru || gmg@nt-rt.ru

Flow Transmitter LABO-RR.032-I / U / F / C

- Simple and economical flow meter for piping diameters from 32 mm to 150 mm
- Made from plastic (optionally stainless steel)
- With tapping sleeve fixing for very rapid installation Retro-fitting also easily possible
- 0..10 V, 4..20 mA, frequency/pulse output, completely configurable

Characteristics

The flow meter consists of a spinner which is rotated by the flow speed. The rotational speed is proportional to the flow rate. The rotational speed can be recorded using various sensor systems, depending on the different materials for the housing. With plastic housings, there are no magnets in the flow space.

The LABO electronics make various output signals available:

- Analog signal 0/4...20 mA (LABO-RR.-032-I)
- Analog signal 0/2..10 V (LABO-RR.-032-U)
- Frequency signal (LABO-RR.-032-F) or
- A value signal Pulse / x Litres (LABO-RR.-032-C)

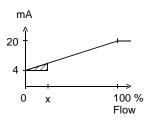
A model with switching output is also available.

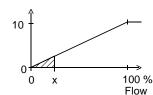
If desired, the range end value can be set to the currently existing flow using "teaching".

Technical data

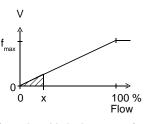
Sensor	LABO-RRI	inductive sensor			
	LABO-RRH	hall sensor			
Nominal widths	DN 32150				
Mechanical Connection	welded-on nozzle, DN 50150 tapping sleeve, DN 32150 glue socket, screw-in probe				
Metering range	151000 l/min for details, see table "Ranges"				
Measurement accuracy	±5 % of full scale va	alue			
Repeatability	±1 % measured val	ue			
Medium temperature	060 °C, type RRH as screw-in probe or with welded-on nozzle 095 °C				
Pressure resistance	PN 10 bar				
Pressure loss	typically < 0.1 bar				

Sensors and Instrumentation


Materials medium-contact						
Housing	PVC	1.4305				
Tapping sleeve	PP	PP				
Rotor	PVDF / 1.4310 or Titanium	PVDF / Magnets				
Bearing	Iglidur X	Iglidur X				
Axis	Ceramic Zr02-TZP	Ceramic Zr02-TZP				
Seal	FKM	FKM				
Materials, non-	Sensor tube:	CW614N nickelled				
medium-contact	Adhesive:	epoxy resin				
	Flange bolts:	stainless steel				
Supply voltage	1030 V DC at voltage output 10 V: 1530 V DC					
Power	< 1 W (for no-load outputs)					
consumption						
Output data:	all outputs are resis reversal polarity pro	tant to short circuits and tected				
Current output:	420 mA (020 mA	available on request)				
Voltage output:	010 V (210 V ava output current max.					
Frequency output:	transistor output "pu I _{out} = 100 mA max.	ısh-pull"				
Pulse output:	transistor output "pu $I_{out} = 100 \text{ mA max.}$ Pulse width 50 ms Pulse per volume is					
Display	vellow LCD shows					
Display	operating voltage (LABO-XF-I / U) or output status (LABO-XF-F / C) or (rapid flashing = Programming)					
Electrical connection	for round plug conne					
Ingress protection	IP 67					
Conformity	CE					


Signal output curves

Current output

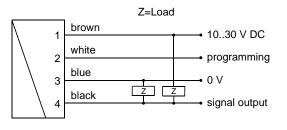

Voltage output

V

Frequency output

 f_{max} selectable in the range of up to 2000 Hz

Other characters on request.



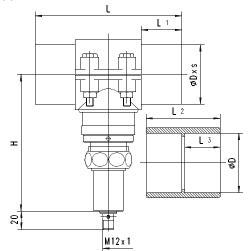
Ranges

Nominal width	Metering range I/min H2O	Q _{max} I/min
DN 32	15 200	220
DN 40	15 300	360
DN 50	25 400	480
DN 65	40 500	600
DN 80	50 700	840
DN 100	851000	1200

The measured values were determined using a standing sensor in a flow of water from left to right at 25 °C and with 10 x D run-in and run-out sections.

Wiring

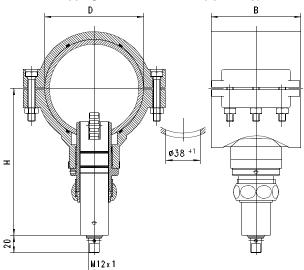
Connection example: PNP NPN


Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

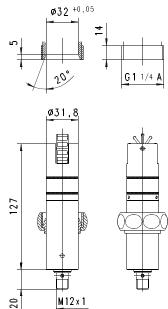
The use of shielded cabling is recommended.

Sensors and Instrumentation

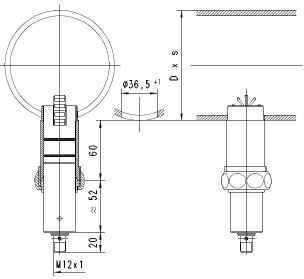
Dimensions


Connection: tapping sleeve with piping section and glue socket(s) RR.-032MH...

Nominal width	Туре	ØD	S	Η	L	L1	L2	L3
DN 32	RR032MH032.	40	1.9	145.0	132	31	55	26
DN 40	RR032MH040.	50	2.4		142	36	65	31
DN 50	RR032MH050.	63	3.0		156	43	79	38
DN 65	RR032MH065.	75	3.6	153.5	178	49	92	44
DN 80	RR032MH080.	90	4.3	156.0	202	56	107	51
DN 100	RR032MH100.	110	5.3	166.0	232	66	128	61
DN 125	RR032MH125.	140	6.7	172.0	287	81	159	76
DN 150	RR032MH150.	160	7.7	180.0	312	91	180	86



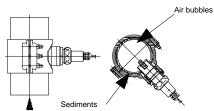
Connection: tapping sleeve RR.-032BB... (optionally)


Nominal width	Туре	D	В	Н
DN 50	RR032BB050.	63	70	145.0
DN 65	RR032BB065.	75	80	153.5
DN 80	RR032BB080.	90	90	156.0
DN 100	RR032BB100.	110	100	166.0
DN 125	RR032BB125.	140	125	172.0
DN 150	RR032BB150.	160	130	180.0

Connection: screw-in probe RR.-032RM000. Provided by customer

Sensors and Instrumentation

Connection: welded-on nozzle RR.-032VK000. (optionally)



Handling and operation

Installation

The flow meters are inserted in probe form in a tapping sleeve, and are marked with the correct insertion depth. The installation direction of the probe is lengthways to the spinner, and is indicated with arrows on the front of the flow meter. An angular deviation of ± 3 ° has no effect on the measurement.

The sensor must be installed with run-in and run-out sections of $10 \times D$ of the pipe diameter, in order to prevent vortices and turbulence.

The best installation position (low contamination, good venting) is with the direction of flow from bottom to top, or in horizontal piping with the sensor at an angle of 45 ° downwards. The union nut must be tightened to a torque of 30 Nm.

Note

The metering range end value can be programmed by the user via "teaching". Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

The teaching option is not available for the pulse output version.

Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as an indicator of operating voltage (for analog output) or of switching status (for frequency or pulse output).

To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.

Example: The end of the metering range should be set to 80 %. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $+20^{\circ}$ %. At a flow rate of 60 % in the process, teaching would then store a value of 80 %.

If necessary, a far greater number of parameters can also be programmed using the ECI-1 configuration interface.

Ordering code

The basic device is ordered e.g. RRI-032... with electronics e.g. LABO-RRI-032...

RR	1.	2. 032		3.	4.	5.	6.	7.	8. E
LABC)-RR	9. -	10.	11. S	12.	13.			

O=Option

1.	Sens	or						
	I		with inductive sensor					
	Н		with Hall sensor					
2.	Unior	n nu	It					
	032		G 1 ¹ / ₄					I
3.	Mech	ani	cal connection					I
	ΜН		tapping sleeve with piping section and PVC glue sockets					
	BB	0	PP tapping sleeve					
	RM		screw-in probe G 1 ¹ / ₄ with clamping ring and union nut					
	VK	0	welded-on nozzle 1.4305					
4.	Mate	rial	for probe					
	Н		PVC					•
	К		stainless steel 1.4305				•	
5.	Nomi	nal	width					
	000		screw-in probe / Welded-on nozzle	•	•			
	032		DN 32			•		
	040		DN 40			•		1
	050		DN 50			• •		1
	065		DN 65			• •		
	080		DN 80			• •		1
	100		DN 100			• •		

Sensors and Instrumentation

	125		DN 125				
	150		DN 150				
6.	Sealin	ıg r	naterial				
	V		FKM				
	Е	О	EPDM				
	Ν	О	NBR				
7.	Rotor						
	10K		with 10 stainless steel clamps (RRI)				
	10T	О	with 10 titanium clamps (RRI)				
	05M		with 5 magnets (RRH)				
8.	Conne	ecti	on for				
	Е		electronics				
9.	Senso	or					
	1		with inductive sensor				
	Н		with Hall sensor				
10.	Signa	Ιοι	Itput				
	I		420 mA				
	U		010 V				
	F		frequency output				
	С		pulse output				
11.	Programming						
	Ν		cannot be programmed (no teaching)				
	Р	О	programmable (teaching possible)				
12.	Electr	ica	I connection				
	S		for round plug connector M12x1, 4-pole				
13.	Option	nal					
	Н	О	100 °C version (with 300 mm cable)				

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Device configurator ECI-1

Flow Switch LABO-RR.032-S

- Simple and economical flow meter for piping diameters from 32 mm to 150 mm
- Made from plastic (optionally stainless steel)
- With tapping sleeve fixing for very rapid installation Retro-fitting also easily possible
- 0..10 V , 4..20 mA , frequency/pulse output, completely configurable

Characteristics

The flow meter consists of a spinner which is rotated by the flow speed. The rotational speed is proportional to the flow rate. The rotational speed can be recorded using various sensor systems, depending on the different materials for the housing. With plastic housings, there are no magnets in the flow space.

The LABO electronics make available an electronic switching output (push-pull) with adjustable characteristics (minimum/maximum) and hysteresis, which responds when an adjustable limit is fallen short of or exceeded.

If desired, the switching value can be set to the currently existing flow using "teaching". Models with analog or pulse output are also available.

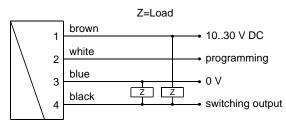
Technical data

Sensor	LABO-RRI	inductive sensor			
	LABO-RRH	hall sensor			
Nominal widths	DN 32150				
Mechanical	welded-on nozzle,				
Connection	DN 50150 tapping sleeve, DN 32150 glue socket, screw-in probe				
Switching range	151000 l/min				
	For details, see table	"Ranges"			
Measurement accuracy	±5 % of full scale val	ue			
Repeatability	±1 % measured value	е			
Medium	060 °C,				
temperature	type RRH as screw-in probe or with welded-on nozzle 095 °C				
Pressure	PN 10 bar				
resistance					
Pressure loss	typically < 0.1 bar				

HONSBERG

Sensors and Instrumentation

Materials medium-contact	LABO-RRI	LABO-RRH			
Housing	PVC	1.4305			
Tapping sleeve	PP	PP			
Rotor	PVDF / 1.4310 or titanium	PVDF / Magnets			
Bearing	Iglidur X	Iglidur X			
Axis	Ceramic Zr02-TZP	Ceramic Zr02-TZP			
Seal	FKM	FKM			
Materials, non-	Sensor tube:	CW614N nickelled			
medium-contact	Adhesive:	epoxy resin			
	Flange bolts:	stainless steel			
Supply voltage	1030 V DC at voltage output 10 V: 1530 V DC				
Power consumption	< 1 W (for no-load outputs)				
Output data:	all outputs are resistant to short circuits and reversal polarity protected				
Current output:	420 mA (020 mA	available on request)			
Voltage output:	010 V (210 V ava output current max.				
Frequency output:	transistor output "pu I _{out} = 100 mA max.	sh-pull"			
Pulse output:	transistor output "push-pull" $I_{out} = 100 \text{ mA max.}$ pulse width 50 ms pulse per volume is to be stated				
Display	yellow LCD shows operating voltage (LABO-XF-I / U) or output status (LABO-XF-F / C) or (rapid flashing = Programming)				
Electrical connection	for round plug conne	ector M12x1, 4-pole			
Ingress protection	IP 67				
Conformity	CE				

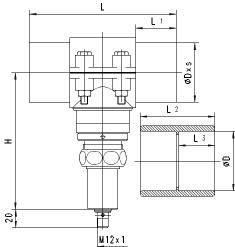

Ranges

Nominal width	Switching range I/min H2O	Q _{max} I/min
DN 32	15 200	220
DN 40	15 300	360
DN 50	25 400	480
DN 65	40 500	600
DN 80	50 700	840
DN 100	851000	1200

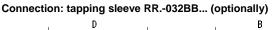
The measured values were determined using a standing sensor in a flow of water from left to right at 25 $^{\circ}\text{C}$ and with 10 x D run-in and run-out sections.

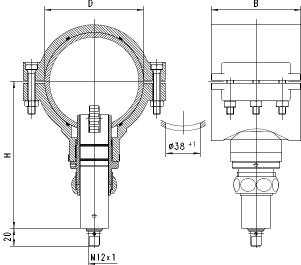
HONSBERG

Product Information Wiring


Connection example: PNP NPN

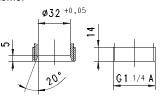
Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet. The use of shielded cabling is recommended.

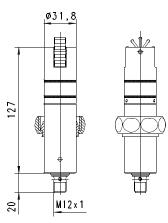

Dimensions


Connection: tapping sleeve with piping section and glue socket(s) RR.-032MH...

Nominal width	Туре	ØD	S	Η	L	L1	L2	L3
DN 32	RR032MH032.	40	1.9	145.0	132	31	55	26
DN 40	RR032MH040.	50	2.4		142	36	65	31
DN 50	RR032MH050.	63	3.0		156	43	79	38
DN 65	RR032MH065.	75	3.6	153.5	178	49	92	44
DN 80	RR032MH080.	90	4.3	156.0	202	56	107	51
DN 100	RR032MH100.	110	5.3	166.0	232	66	128	61
DN 125	RR032MH125.	140	6.7	172.0	287	81	159	76
DN 150	RR032MH150.	160	7.7	180.0	312	91	180	86

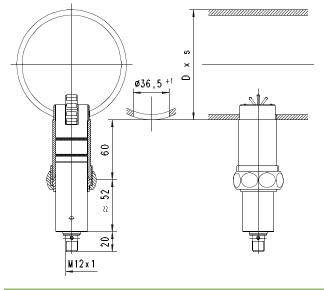
Sensors and Instrumentation



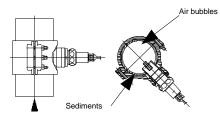


Nominal width	Туре	D	В	Н
DN 50	RR032BB050.	63	70	145.0
DN 65	RR032BB065.	75	80	153.5
DN 80	RR032BB080.	90	90	156.0
DN 100	RR032BB100.	110	100	166.0
DN 125	RR032BB125.	140	125	172.0
DN 150	RR032BB150.	160	130	180.0

Connection: screw-in probe RR.-032RM000.


Provided by customer

Connection: welded-on nozzle RR.-032VK000. (optionally)



Handling and operation

Installation

The flow meters are inserted in probe form in a tapping sleeve, and are marked with the correct insertion depth. The installation direction of the probe is lengthways to the spinner, and is indicated with arrows on the front of the flow meter. An angular deviation of $\pm 3^{\circ}$ has no effect on the measurement.

The sensor must be installed with run-in and run-out sections of $10 \times D$ of the pipe diameter, in order to prevent vortices and turbulence.

The best installation position (low contamination, good venting) is with the direction of flow from bottom to top, or in horizontal piping with the sensor at an angle of 45 ° downwards. The union nut must be tightened to a torque of 30 Nm.

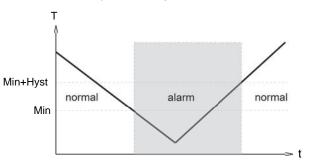
Sensors and Instrumentation

Note

The switching value can be programmed by the user via "teaching". If desired, programmability can be blocked by the manufacturer. The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

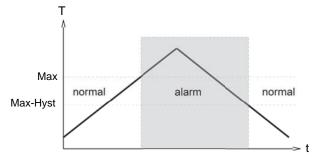
Operation and programming

The switching value is set as follows:

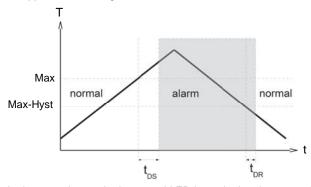

- Apply the flow rate to be set to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.

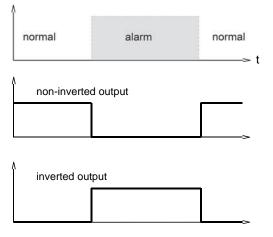
To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.


Example: The switching value should be set to 80 %. However, it is possible only to reach 60 % without problems. In this case, the device would be ordered with a "teach-offset" of +20 %.. At a flow rate of 60 % in the process, teaching would then store a value of 80 %.

The limit switch can be used for monitoring minima or maxima. With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.



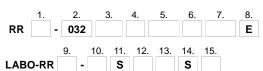
With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.



A changeover delay time (t_{DS}) can be applied to switching to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.

In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V, so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V, and in the alarm state it is at the level of the supply voltage.



A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

Sensors and Instrumentation

Ordering code

The basic device is ordered e.g. RRI-032... with electronics e.g. LABO-RRI-032...

O=Option

1.	Sensor						
	1	with inductive sensor					-
	Н	with Hall sensor					1
2.	Union nu	It				7	İ.
	032	G 1 ¹ / ₄				-	
3.	Mechanie	cal connection				-	
	MH	tapping sleeve with piping section and PVC glue sockets				-	
	BB Q	PP tapping sleeve					
	RM	screw-in probe G 1 ¹ / ₄ with clamping ring and union nut					
	VK O	welded-on nozzle 1.4305					
4.	Material	for probe					
	Н	PVC					•
	K	stainless steel 1.4305				•	
5.	Nominal	width					
	000	screw-in probe / Welded-on nozzle	•	•			
	032	DN 32			•	,	
	040	DN 40			•	•	
	050	DN 50			• •	,	
	065	DN 65			• •	,	
	080	DN 80			• •	,	
	100	DN 100			• •	,	
	125	DN 125			• •	,	
	150	DN 150			• •	,	
6.	Seal mat	erial					
	V	FKM				1	
	E O	EPDM					
	N O	NBR					
7.	Rotor						
	10K	with 10 stainless steel clamps (RRI)				•
	10T O	with 10 titanium clamps (RRI)					•
	05M	with 5 magnets (RRH)				•	
8.	Connect	on for					
	E	electronics					
9.	Sensor					_	
	Ι	with inductive sensor					•
	Н	with Hall sensor				•	
10.		g output (Limit switch)					
	S	push-pull (compatible with PNP and	d N	PN))		
11.	Program						
	Ν	cannot be programmed (no teachin	g)				
	P O	programmable (teaching possible)					

12.	Switchin	g function
	L	minimum switch
	Н	maximum switch
13.	Switchin	g signal
	0	Standard
	I 0	Inverted
14.	Electrica	I connection
	S	For round plug connector M12x1, 4-pole
15.	Optional	
	НО	100 °C version (with 300 mm cable)

Sensors and Instrumentation

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Device configurator ECI-1

Flow Transmitter LABO-RRH-I / U / F / C

- Uncomplicated measurement of flow rates
- Metal housing with Hall sensor
- Working pressure up to 100 bar
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems
- Plug-in and rotatable connections
- 0..10 V, 4..20 mA , frequency/pulse output, completely configurable
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

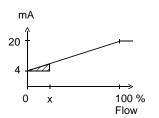
The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with magnets. A Hall sensor records the rotational speed, which is proportional to the flow rate.

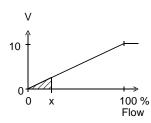
The LABO-RRH electronics make various output signals available:

- Analog signal 0/4..20 mA (LABO-RRH-I)
- Analog signal 0/2..10 V (LABO-RRH-U)
- Frequency signal (LABO-RRH-F) or
- Value signal Pulse / x Litres (LABO-RRH-C)

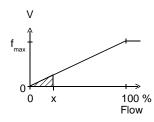
A model with switching output is also available.

If desired, the range end value can be set to the currently existing flow using "teaching".


Sensors and Instrumentation

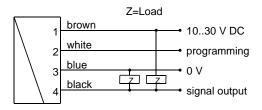

Technical data					
Sensor	hall element				
Nominal width	DN 10 (LABO-R	RH-010)			
	DN 25 (LABO-R	,			
Mechanical	female thread G				
connection	male thread G ³ /	- ,			
	hose nozzle Ø11, Ø30 (other threaded, crimped, and plug-in				
	connections, connections with constant flow				
		niters available on request)			
Metering ranges	0.1100 l/min for details, see ta	able "Panges"			
Measurement	± 3 % of the mea	J			
accuracy					
Repeatability	±1 % of full scale	e value			
Pressure loss	max. 0.5 bar				
Pressure resistance	PN 100 bar				
Medium	060 °C, optiona	ally 0100 °C			
temperature					
Storage	-20+80 °C				
temperature Materials	Housing	CW614N nickelled or			
medium-contact	. loading	1.4305			
	Rotor	PVDF with magnets,			
		glued with epoxy resin			
	Bearing	Iglidur X			
	Axis	Ceramic Zr0 ₂ -TZP			
	Seal	FKM			
Materials, non- medium-contact	Clamps Electronic	1.4301 CW614N nickelled			
medium contact	housing	CVV614IN MICKelled			
Supply voltage	1030 V DC at v 1530 V DC	oltage output 10 V:			
Power consumption	< 1 W (for no-loa	ad outputs)			
Output data:	all outputs are re	esistant to short circuits and			
-	reversal polarity	protected			
Current output:	```	mA available on request)			
Voltage output:	010 V (210 V Output current m	available on request)			
Frequency	transistor output				
output:	$I_{out} = 100 \text{ mA ma}$				
	output frequency				
		standard 500 Imp/l 666.7 Hz at 80 l/min)			
		values: 5000 lmp/l			
		500 Hz at 6 l/min)			
Dula in the f	· ·	es available on request)			
Pulse output:	transistor output I _{out} = 100 mA ma	· ·			
	pulse width 50 m				
	pulse per volume	e is to be			
Display	stated				
Display	yellow LCD show	vs e (LABO-RRH-I / U) or			
	output status (LA	ABO-RRH-F / C)			
	(rapid flashing =				
Electrical connection	tor round plug co	onnector M12x1, 4-pole			
Ingress protection	IP 67				
Weight	LABO-RRH-010	approx. 0.6 kg			
3	LABO-RRH-025	11 0			
Conformity	CE				

Signal output curves


Current output

Voltage output

Frequency output


 f_{max} selectable in the range of up to 2000 Hz

Other characters on request.

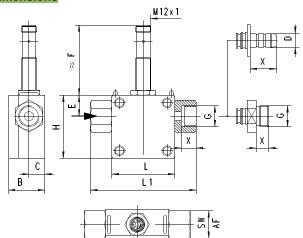
Metering ranges

Metering range I/min (H ₂ O)	Types	Q _{max} I/min (H ₂ O)
0.1 1.5	LABO-RRH-010020	1.8
0.2 10.0	LABO-RRH-010050	12.0
0.4 12.0	LABO-RRH-010070	14.4
2.0 30.0	LABO-RRH-025080	36.0
3.0 60.0	LABO-RRH-025120	72.0
4.0 100.0	LABO-RRH-025160	120.0

Wiring

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.


It is recommended to use shielded wiring.

HONSBERG

Sensors and Instrumentation

The push-pull output) of the frequency output version can as desired be switched as a PNP or an NPN output.

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	E	F	Х	SW
G ³ / ₈	10	RRH-010G	50	84	29	12.5	16.5	56	12	22
G ³ / ₈ A	1	RRH-010A						14		
G 1	25	RRH-025G	70	110	53	23.0	27.5	51	18	38
G 1 A		RRH-025A		122						

Hose nozzle connection

_					_	-	_		
D	DN	Types	H/L	L1	в	С	E	F	Х
Ø11	10	RRH-010T	50	96	29	12.5	16.5	56	21
Ø30	25	RRH-025T	70	176	53	23.0	27.5	51	45

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

HONSBERG

Product Information

Note

The metering range end value can be programmed by the user via "teaching". Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment. The teaching option is not available for the pulse output version.

Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as an indicator of operating voltage (for analog output) or of switching status (for frequency or pulse output).

In order to avoid the need to transit to an undesired operating status during the teach-in, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.

Example: The end of the metering range should be set to 80 %. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $\pm 20^{\circ}$ %.. At a flow rate of 60 % in the process, teaching would then store a value of 80 %.

If necessary, a far greater number of parameters can also be programmed using the ECI-1 device configurator.

Sensors and Instrumentation

Ordering code

The basic device is ordered e.g. RRH-010xxx with electronics e.g. LABO-RRH-010xxx

O=Option

	puon			
1.	Nominal	width		-
	010	DN 10		-
	025	DN 25	-	
2.	Mechanic	cal connection		
	G	female thread		
	A	male thread		
	Т	hose nozzle		
3.	Connecti	on material		
	М	CW614N nickelled		
	К	1.4305		
4.	Housing	material		
	М	CW614N		
	К	1.4305		
5.	Inwards f	low drilling		
	020	Ø 2.0		•
	050	Ø 5.0		•
	070	Ø 7.0		•
	080	Ø 8.0	•	
	120	Ø12.0	•	
	160	Ø16.0	•	
6.	Seal mate	erial		
	V	FKM		
	E O	EPDM		
	N O	NBR		
	КО	Kemraz		
7.	Rotor			
	05	with 5 magnets		
	02 O	with 2 magnets		
8.	Rotor ma	terial		
	V	PVDF		
9.	Connecti	on for		
	E	electronics		
10.	For nomi	nal width		l
10.	010	DN 10		•
	025	DN 25	•	•
11.			-	
		current output 420 mA		
	U	voltage output 010 V		
	F	frequency output (see "Ordering information")		
		pulse output (see "Ordering information")		
12.	Program			
. 2.	N	cannot be programmed (no teaching)		
		programmable (teaching possible)		
13.		connection		
	S	for round plug connector M12x1, 4-pole		
14.	Optional			
		100 °C version (with 300 mm cable)		

Required ordering information

For LABO-RRH-F:

cale		

Output frequency at full sca Maximum value: 2.000 Hz

For LABO-RRH-C:

For the pulse output version, the volume (with numerical value and unit) which will correspond to one pulse must be stated.

Volume per pulse (numerical value)

Hz

Volume per pulse (unit)

Sensors and Instrumentation

Options for LABO

Special range for analog output: <= metering range (standard=metering range)

RUM

Special range for frequency output: <= metering range (standard=metering range)

Power-On delay period (0..99 s)

(time after applying power during which the outputs are not activated or set to defined values)

Further options available on request.

Options

- Transparent cover DN 10
- Air or gas model

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Evaluation electronics OMNI-TA
- Device configurator ECI-1

		l/min
		l/min

	-	
	S	
		s

Flow Switch LABO-RRH-S

- Uncomplicated monitoring of flow rates
- Metal housing with Hall sensor
- Working pressure up to 100 bar
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems
- Plug-in and rotatable connections
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with magnets. A Hall sensor records the rotational speed, which is proportional to the flow rate.

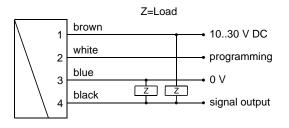
The LABO-RRH electronics make available an electronic switching output (push-pull) with adjustable characteristics

(minimum/maximum) and hysteresis, which responds when an adjustable limit is fallen short of or exceeded.

If desired, the switching value can be set to the currently existing flow using "teaching".

Models with analog or pulse output are also available.

IONSBERG


Sensors and Instrumentation

Technical data						
Sensor	hall element					
Nominal width	DN 10 (LABO-RRH-010)					
	DN 25 (LABO-RRH-025)					
Mechanical Connection	female thread G ${}^{3}/_{8}$, G 1 male thread G ${}^{3}/_{8}$ A, G 1 A hose nozzle Ø11, Ø30 (other threaded, crimped, and plug-in connections, connections with constant flow rate device or limiters available on request)					
Switching ranges	0.1100 l/min for details, see table "Ranges"					
Measurement accuracy	±3 % of the mea	asured value				
Repeatability	±1 % of full scale value					
Pressure loss	max. 0.5 bar					
Pressure resistance	PN 100 bar					
Medium temperature	060 °C, option	ally 0100 °C				
Storage temperature	-20+80 °C					
Materials medium-contact	Housing Rotor Bearing Axis Seal	CW614N nickelled or 1.4305 PVDF with magnets, glued with epoxy resin Iglidur X Ceramic Zr0 ₂ -TZP FKM				
Materials, non-	Clamps	1.4301				
medium-contact	Electronic	CW614N nickelled				
Supply voltage	1030 V DC at v 1530 V DC	voltage output 10 V:				
Power consumption	< 1 W (for no-lo	ad outputs)				
Switching output		rt circuits and polarity				
Display	reversal) I _{out} = 100 mA max. yellow LED (On = Normal / Off = Alarm / rapid flashing = Programming)					
Electrical connection	for round plug c	onnector M12x1, 4-pole				
Ingress protection	IP 67					
Weight	LABO-RRH-010 LABO-RRH-025	11 0				
Conformity	CE					

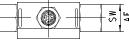
Ranges

Metering range I/min (H ₂ O)	Types	Q _{max} I/min (H ₂ O)
0.1 1.5	LABO-RRH-010020	1.8
0.2 10.0	LABO-RRH-010050	12.0
0.4 12.0	LABO-RRH-010070	14.4
2.0 30.0	LABO-RRH-025080	36.0
3.0 60.0	LABO-RRH-025120	72.0
4.0100.0	LABO-RRH-025160	120.0

Product Information Wiring

Connection example: PNP NPN




Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.

The push-pull output) can as desired be switched as a PNP or an NPN output.

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	Е	F	Х	SW
G ³ / ₈	10	RRH-010G	50	84	29	12.5	16.5	56	12	22
G ³ / ₈ A		RRH-010A							14	
G 1	25	RRH-025G	70	110	53	23.0	27.5	51	18	38
G 1 A		RRH-025A		122						

Hose nozzle connection

D	DN	Types	H/L	L1	в	С	Е	F	Х
Ø11	10	RRH-010T	50	96	29	12.5	16.5	56	21
Ø30	25	RRH-025T	70	176	53	23.0	27.5	51	45

Sensors and Instrumentation

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Note

The switching value can be programmed by the user via "teaching". If desired, programmability can be blocked by the manufacturer.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

Operation and programming

The teaching process can be carried out by the user as follows: • The flow rate to be set is applied to the device.

- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as an indicator of operating voltage (for analog output) or of switching status (for frequency or pulse output).

To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.

Example: The end of the metering range should be set to 80 %. However, only 60 % can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of +20 %.. At a flow rate of 60 % in the process, teaching would then store a value of 80 %.

Ordering code

O=Option

1.	Nomin	nal v	width		
	010		DN 10		
	025		DN 25		1
2.		nic	al connection		İ.
	G		female thread	-	
	A		male thread		
	т		hose nozzle	-	
3.	•	ecti	on material		
••	M		CW614N nickelled	-	
	ĸ		1.4305		
4.		na	material	_	
	M		CW614N	-	
	ĸ		1.4305	-	
5.		ls f	low drilling		
•	020		Ø 2.0		•
	050		Ø 5.0		•
	070	_	Ø 7.0		•
	080		Ø 8.0	•	
	120		Ø12.0	•	
	160		Ø16.0	•	
6.	Seal m	nate			
••	V		FKM	-	l I
	Ē	0	EPDM	-	
	N		NBR		
	ĸ		Kemraz	-	
7.	Rotor				
	05		with 5 magnets	-	
	02	0	with 2 magnets		
8.	Rotor			-	
	V		PVDF	-	
9.	Conne	ecti	on for		
	E		electronics	-	
	_			_	
10.		omi	nal width		
	010		DN 10	_	•
	025	_	DN 25	•	
11.		ning	g output (Limit switch)		
15	S		push-pull (compatible with PNP and NPN)		
12.	Progra	ami			
	P	~	programmable (teaching possible)		
40	N		cannot be programmed (no teaching)		
13.	Switch	ın	g function minimum-switch		
	H		maximum switch		
14.		nine	g signal		
	0		standard		
	Î	0	inverted		
15.	Electri	ical	connection		
	S		for round plug connector M12x1, 4-pole		
	Ontion	101			
16.	Option H		100 °C version (with 300 mm cable)		

Sensors and Instrumentation

Options for LABO

Switching delay period (0.099.9 s) (from Normal to Alarm)	. S
Switch-back delay period (0.099.9 s) (from Alarm to Normal)	S
Power-On-Delay period (099 s) (after connecting the supply, time during which the switching output is not activated)	S
Switching output fixed at	l/min
Switching hysteresis standard = 2 % of the metering range	%
Teach-offset (in percent of the metering range) Standard = 0 %	%
Further options available on request.	
Options	
Transparent cover DN 10Air or gas model	

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories" •
- Device configurator ECI-1 •

Flow Transmitter LABO-RRI-I / U / F / C

- Uncomplicated measurement of flow rates
- No magnets; uses inductive sensor
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems
- Plug-in and rotatable connections
- 0..10 V, 4..20 mA , frequency/pulse output, completely configurable
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with stainless steel clamps (optionally titanium or Hastelloy[®]). An inductive proximity switch records the rotational speed, which is proportional to the flow rate.

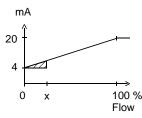
The LABO-RRI electronics make various output signals available:

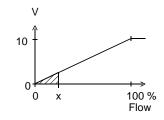
- Analog signal 0/4..20 mA (LABO-RRI-I)
- Analog signal 0/2..10 V (LABO-RRI-U)
- Frequency signal (LABO-RRI-F) or
- Value signal Pulse / x Litres (LABO-RRI-C)

A model with switching output is also available.

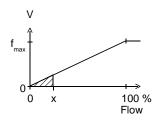
If desired, the range end value can be set to the currently existing flow using "teaching".

HONSBERG


Sensors and Instrumentation

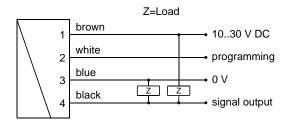

Technical data						
Sensor	inductive					
Nominal width	DN 10 (FLEX-F	RRI-010)				
	DN 25 (FLEX-F	RRI-025)				
Mechanical	female thread C	G ³ / ₈ , G 1				
Connection	male thread G ³ / ₈ A, G 1 A					
	hose nozzle Ø11, Ø30 (other threaded, crimped, and plug-in					
	connections, connections with constant flow					
		miters available on request)				
Metering ranges	0.1100 l/min	. ,				
	for details, see	table "Ranges"				
Measurement	±3 % of the me	asured value				
accuracy	. 4.0/	la vialua				
Repeatability	±1 % of full sca	le value				
Pressure loss Pressure	max. 0.5 bar PN 16 bar					
resistance	FIN TO DAT					
Medium	060 °C					
temperature						
Storage temperature	-20+80 °C					
Materials	Housing	PPS				
medium-contact	· rousing	(Fortron 1140L4)				
	Rotor	PVDF				
	Clamps	1.4310				
		optionally:				
	_ .	titanium or Hastelloy®				
	Bearing	Iglidur X				
	Axis	Ceramic Zr0 ₂ -TZP				
Motoriolo, non	Seal	FKM 1.4301				
Materials, non- medium-contact	Clamps Electronic	CW614N nickelled				
	housing	CW014IN HICKelleu				
Supply	1030 V DC at	voltage output 10 V:				
voltage	1530 V DC					
Power consumption	< 1 W (for no-lo	bad outputs)				
Output data:	all outputs are i	resistant to short circuits and				
output data.	reversal polarity					
Current output:		mA available on request)				
Voltage	010 V (210 V	/ available on request)				
output:	Output current					
Frequency	transistor output					
output:	I _{out} = 100 mA m	ax. cy dependent on				
		, standard 500 lmp/l				
		o 666.7 Hz at 80 l/min)				
	•	all values: 5000 Imp/l				
		o 500 Hz at 6 l/min) ies available on request)				
Pulse output:	transistor output					
	$I_{out} = 100 \text{ mA m}$					
	pulse width 50					
Disalar	· · ·	ne is to be stated				
Display		ows operating voltage J) or output status				
	(LABO-RRI-F /	C) (rapid flashing =				
	Programming)					
Electrical	for round plug of	connector M12x1, 4-pole				
connection						
Ingress protection	IP 67					
Weight	LABO-RRI-010	11 0				
O a mé a muit	LABO-RRI-025	approx. 0.5 kg				
Conformity	CE					

Signal output curves


Current output

Voltage output

Frequency output


 f_{max} selectable in the range of up to 2000 Hz

Other characters on request.

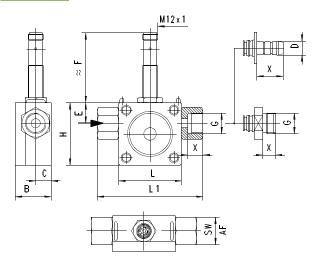
Ranges

Metering range I/min (H ₂ O)	Туреѕ	Q _{max} I/min (H ₂ O)
0.1 1.5	LABO-RRI-010020	1.8
0.2 10.0	LABO-RRI-010050	12.0
0.4 12.0	LABO-RRI-010070	14.4
2.0 30.0	LABO-RRI-025080	36.0
3.0 60.0	LABO-RRI-025120	72.0
4.0100.0	LABO-RRI-025160	120.0

Wiring

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.


HONSBERG

Sensors and Instrumentation

It is recommended to use shielded wiring.

The push-pull output) of the frequency output version can as desired be switched as a PNP or an NPN output.

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	Е	F	Х	SW
G ³ / ₈	10	RRI-010G	50	84	29	12.5	16.5	56	12	22
G ³ / ₈ A	1	RRI-010A							14	
G 1	25	RRI-025G	70	110	53	23.0	27.5	51	18	38
G 1 A	1	RRI-025A		122						

Hose nozzle connection

D	DN	Types	H/L	L1	в	С	Е	F	Х
Ø11	10	RRI-010T	50	96	29	12.5	16.5	56	21
Ø30	25	RRI-025T	70	176	53	23.0	27.5	51	45

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Note

The metering range end value can be programmed by the user via "teaching". Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed. The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

The teaching option is not available for the pulse output version.

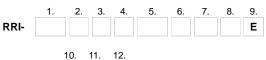
Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as an indicator of operating voltage (for analog output) or of switching status (for frequency or pulse output).

In order to avoid the need to transit to an undesired operating status during the teach-in, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.


Example: The end of the metering range should be set to 80 %. However, only 60 % can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $\pm 20^{\circ}$ %.. At a flow rate of 60 % in the process, teaching would then store a value of 80 %.

If necessary, a far greater number of parameters can also be programmed using the ECI-1 device configurator.

Sensors and Instrumentation

Ordering code

The basic device is ordered e.g. RRI-010xxx with electronics e.g. LABO-RRI-010xxx

O=Option

1. Nominal width 010 DN 10 025 DN 25 2. Mechanical connection G female thread A male thread T hose nozzle 3. Connection material	
025 DN 25 2. Mechanical connection G female thread A male thread T hose nozzle	
A male thread A male thread T hose nozzle	
G female thread A male thread T hose nozzle	
A male thread T hose nozzle	
T hose nozzle	
3. Connection material	
V PVDF	
M O CW614N nickelled	
4. Housing material	
Q PPS	
V PVDF	
A O PPS with transparent cover PSU	
5. Inwards flow drilling	
020 Ø 2.0	•
050 Ø 5.0	•
070 Ø 7.0	•
080 Ø 8.0	•
120 Ø12.0	•
160 Ø16.0	•
6. Seal material	
V FKM	
E O EPDM	
N O NBR	
7. Rotor	
10 with 10 clamps	
02 O with 2 clamps	
05 O with 5 clamps	
8. Material for clamps	
K 1.4310	
T O titanium	
H O Hastelloy®	
9. Connection for	
E electronics	
10. Signal output	
I current output 420 mA	
U voltage output 010 V	
F frequency output (see "Ordering informa	tion")
C pulse output (see "Ordering information")
11. Programming	
N cannot be programmed (no teaching)	
P O programmable (teaching possible)	
12. Electrical connection	
S for round plug connector M12x1, 4-pole	

Required ordering information

For LABO-RRI-F: Output frequency at full scale

		Hz

For LABO-RRI-C:

Maximum value: 2.000 Hz

For the pulse output version, the volume (with numerical value and unit) which will correspond to one pulse must be stated.

Volume per pulse (numerical value)

	-	

Volume per pulse (unit)

Sensors and Instrumentation

Options for LABO

Special range for analog output: <= metering range (standard=metering range)

Special range for frequency output: <= metering range (standard=metering

range) Power-On delay period (0..99 s)

(time after applying power during which the outputs are not activated or set to defined values)

Further options available on request.

Options

• Rotor with titanium clamps

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Evaluation electronics OMNI-TA
- Device configurator ECI-1

	l/min

s

Flow Switch LABO-RRI-S

- Uncomplicated monitoring of flow rates
- No magnets; uses inductive sensor
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems
- Plug-in and rotatable connections
- Optionally, non-return valve, filter, constant flow rate device in the connections

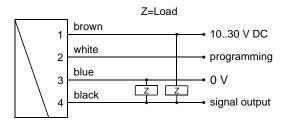
Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with stainless steel clamps (optionally titanium or Hastelloy[®]). An inductive proximity switch records the rotational speed, which is proportional to the flow rate.

The LABO-RRI electronics make available an electronic switching output (push-pull) with adjustable characteristics (minimum/maximum) and hysteresis, which responds when an adjustable limit is fallen short of or exceeded.

If desired, the switching value can be set to the currently existing flow using "teaching".

Models with analog or pulse output are also available.


Sensors and Instrumentation

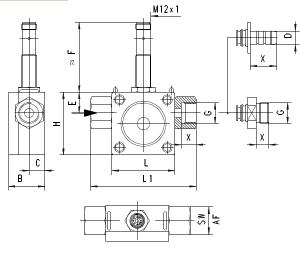
Technical data						
Sensor	inductive					
Nominal width	DN 10 (LABO-F	RRI-010)				
	DN 25 (LABO-RRI-025)					
Mechanical Connection	connections, co	3/₄ A, G 1 A				
Switching ranges	0.1100 l/min for details, see	table "Ranges"				
Measurement accuracy	±3 % of the mea	asured value				
Repeatability	±1 % of full sca	le value				
Pressure loss	max. 0.5 bar					
Pressure resistance	PN 16 bar					
Medium temperature	060 °C					
Storage temperature	-20+80 °C					
Materials medium-contact	Housing	PPS (Fortron 1140L4)				
	Rotor	PVDF				
	Clamps 1.4310 optionally: titanium or Hastelloy					
	Bearing	Iglidur X				
	Axis	Ceramic Zr0 ₂ -TZP				
	Seal	FKM				
Materials, non- medium-contact	Clamps Electronic housing	1.4301 CW614N nickelled				
Supply voltage	1030 V DC at voltage output 10 V: 1530 V DC					
Power consumption	< 1 W (for no-lo	ad outputs)				
Switching output	transistor output "push-pull" (resistant to short circuits and polarity reversal) I _{out} = 100 mA max.					
Display	yellow LED (On = Normal / Off = Alarm / rapid flashing = Programming)					
Electrical connection	for round plug c	connector M12x1, 4-pole				
Ingress protection	IP 67					
Weight	LABO-RRI-010 LABO-RRI-025					
Conformity	CE					
	1					

Ranges

Metering I/min (Types	Q _{max} I/min (H ₂ O)
0.1	1.5	LABO-RRI-010020	1.8
0.2	10.0	LABO-RRI-010050	12.0
0.4	12.0	LABO-RRI-010070	14.4
2.0	30.0	LABO-RRI-025080	36.0
3.0	60.0	LABO-RRI-025120	72.0
4.0 1	100.0	LABO-RRI-025160	120.0

Product Information Wiring

Connection example: PNP NPN



Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.

The push-pull output) can as desired be switched as a PNP or an NPN output.

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	Е	F	Х	SW
G ³ / ₈	10	RRI-010G	50	84	29	12.5	16.5	56	12	22
G ³ / ₈ A		RRI-010A							14	
G 1	25	RRI-025G	70	110	53	23.0	27.5	51	18	38
G 1 A		RRI-025A		122						

Hose nozzle connection

D	DN	Types	H/L	L1	В	С	Е	F	Х
Ø11	10	RRI-010T	50	96	29	12.5	16.5	56	21
Ø30	25	RRI-025T	70	176	53	23.0	27.5	51	45

HONSBERG

Sensors and Instrumentation

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Note

The switching value can be programmed by the user via "teaching". If desired, programmability can be blocked by the manufacturer.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

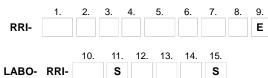
Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as an indicator of operating voltage (for analog output) or of switching status (for frequency or pulse output).

In order to avoid the need to transit to an undesired operating status during the teach-in, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.


Example: The end of the metering range should be set to 80 %. However, only 60 % can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of +20 %.. At a flow rate of 60 % in the process, teaching would then store a value of 80 %.

HONSBERG

Product Information

Ordering code

The basic device is ordered e.g. RRI-010xxx with electronics e.g. LABO-RRI-010xxx

Q=Ontion

)= (Option			
1.	Nomina	al ۱	vidth	
	010		DN 10	
	025		DN 25	
2.	Mecha	nic	al connection	1
	G		female thread	-
	А		male thread	-
	Т		hose nozzle	
3.	Conne	ctio	on material	-
	V		PVDF	-
	М	0	CW614N nickelled	
	К	0	1.4305	
4.	Housin	ıg ı	naterial	
	Q	Ū	PPS	-
	V		PVDF	
	А	0	PPS with transparent cover PSU	-
5.	Inward		low drilling	-
	020		Ø 2.0	
	050		Ø 5.0	
	070		Ø 7.0	
	080		Ø 8.0	•
	120		Ø12.0	•
	160		Ø16.0	•
6.	Seal m	ate		
••	V		FKM	
	E	0	EPDM	-
	N		NBR	-
7.	Rotor			-
	10		with 10 clamps	-
	02	0	with 2 clamps	_
	05		with 5 clamps	-
8.			or clamps	
	K		1.4310	-
	Т	0	titanium	
	H		Hastelloy®	
9.	Conne		· · · · · · · · · · · · · · · · · · ·	
-	E		electronics	
	_			
10.		miı	nal width	
	010		DN 10	
	025		DN 25	•
11.	-	ing	j output (Limit switch)	
• -	S		push-pull (compatible with PNP and NPN)	
12.	Progra	mr		
	P	_	programmable (teaching possible)	
	N		cannot be programmed (no teaching)	
13.		ing	J function	
	L		minimum-switch	
	Н		maximum-switch	

Sensors and Instrumentation

14. Switching signal 0 standard 1 0 15. Electrical connection S for round plug connector M12x1, 4-pole Options for LABO Switching delay period (0.099.9 s) (from Normal to Alarm) Switch-back delay period (0.099.9 s) (from Alarm to Normal) Power-On delay period (099 s) (after connecting the supply, time during which the switching output is not activated) Switching output fixed at Switching hysteresis standard = 2 % of the metering range Teach-offset (in percent of the metering range) standard = 0 %	14. Switching signal	
I O inverted 15. Electrical connection S for round plug connector M12x1, 4-pole Options for LABO Switching delay period (0.099.9 s) . s (from Normal to Alarm) Switch-back delay period (0.099.9 s) . s (from Alarm to Normal) Power-On delay period (099 s) . s (after connecting the supply, time during which the switching output is not activated) Switching output fixed at //min Switching hysteresis % standard = 2 % of the metering range % Teach-offset (in percent of the metering range) %		
15. Electrical connection S for round plug connector M12x1, 4-pole Options for LABO Switching delay period (0.099.9 s) . s (from Normal to Alarm) Switch-back delay period (0.099.9 s) . s (from Alarm to Normal) Power-On delay period (099 s) . s (after connecting the supply, time during which the switching output is not activated) Switching output fixed at //min Switching hysteresis standard = 2 % of the metering range % Teach-offset (in percent of the metering range) %		
S for round plug connector M12x1, 4-pole Options for LABO Switching delay period (0.099.9 s) (from Normal to Alarm) Switch-back delay period (0.099.9 s) (from Alarm to Normal) Power-On delay period (099 s) (after connecting the supply, time during which the switching output is not activated) Switching output fixed at Switching hysteresis standard = 2 % of the metering range Teach-offset (in percent of the metering range)		
Switching delay period (0.099.9 s) . s (from Normal to Alarm) . s Switch-back delay period (0.099.9 s) . . s (from Alarm to Normal) . . s Power-On delay period (099 s) . . s (after connecting the supply, time during which the switching output is not activated) . s Switching output fixed at . . . Switching hysteresis standard = 2 % of the metering range % . % Teach-offset (in percent of the metering range) . % . .		12x1, 4-pole
Switching delay period (0.099.9 s) . s (from Normal to Alarm) . s Switch-back delay period (0.099.9 s) . . s (from Alarm to Normal) . . s Power-On delay period (099 s) . . s (after connecting the supply, time during which the switching output is not activated) . s Switching output fixed at . . . Switching hysteresis standard = 2 % of the metering range % . % Teach-offset (in percent of the metering range) . % . .		,
(from Normal to Alarm) Switch-back delay period (0.099.9 s) (from Alarm to Normal) Power-On delay period (099 s) (after connecting the supply, time during which the switching output is not activated) Switching output fixed at Switching hysteresis standard = 2 % of the metering range Teach-offset (in percent of the metering range)	Options for LABO	
Switch-back delay period (0.099.9 s) . s (from Alarm to Normal) . s Power-On delay period (099 s) . s (after connecting the supply, time during which the switching output is not activated) . s Switching output fixed at . . . Switching hysteresis standard = 2 % of the metering range % . % Teach-offset (in percent of the metering range) . % . .		. s
<pre>(from Alarm to Normal) Power-On delay period (099 s) (after connecting the supply, time during which the switching output is not activated) Switching output fixed at Switching hysteresis standard = 2 % of the metering range Teach-offset (in percent of the metering range) </pre>	(from Normal to Alarm)	
Power-On delay period (099 s) s (after connecting the supply, time during which the switching output is not activated) s Switching output fixed at //min Switching hysteresis % standard = 2 % of the metering range % Teach-offset % (in percent of the metering range) %	Switch-back delay period (0.099.9 s)	. S
(after connecting the supply, time during which the switching output is not activated) Switching output fixed at Switching hysteresis standard = 2 % of the metering range Teach-offset (in percent of the metering range)	(from Alarm to Normal)	
(after connecting the supply, time during which the switching output is not activated) Switching output fixed at Switching hysteresis standard = 2 % of the metering range Teach-offset (in percent of the metering range)		
which the switching output is not activated) Switching output fixed at Switching hysteresis standard = 2 % of the metering range Teach-offset (in percent of the metering range)	Power-On delay period (099 s)	S
Switching output fixed at //min Switching hysteresis % standard = 2 % of the metering range % Teach-offset % (in percent of the metering range) %		
Switching hysteresis % standard = 2 % of the metering range % Teach-offset % (in percent of the metering range) %	which the switching output is not activated)	
Switching hysteresis % standard = 2 % of the metering range % Teach-offset % (in percent of the metering range) %	Switching output fixed at	l/min
standard = 2 % of the metering range Teach-offset (in percent of the metering range)	ownoning output fixed at	
standard = 2 % of the metering range Teach-offset % (in percent of the metering range)	Switching hysteresis	%
Teach-offset % (in percent of the metering range)		
(in percent of the metering range)	6 6	
	Teach-offset	%
standard = 0 %	(in percent of the metering range)	
	standard = 0 %	
Further entions sucilable on request	Further entions available on request	
Further options available on request.	Further options available on request.	
Options	Options	
Rotor with titanium clamps	 Rotor with titanium clamps 	
Accessories	·	

- Cable/round plug connector (KB...) see additional information "Accessories"
- Device configurator ECI-1

contact us

Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59

Архангельск (8182)63-90-72 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Воронеж (473)204-51-73 Краснодар (861)203-40-90 Краснодар (811)203-40-90 Краснодар (81)203-40-90 Красноярск (391)204-63-61 Екатеринбург (343)384-55-89 Курск (4712)77-13-04

Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04

Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Тюмень (3452)66-21-18 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31

Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47 Казахстан (772)734-952-31 Таджикистан (992)427-82-92-69

http://ghm.nt-rt.ru || gmg@nt-rt.ru