LABO-XF-S, I, U, F, C, FLEX-XF, OMNI-XF

Лопастные датчики потока

GHM MESSTECHNIK

Технические характеристики

Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Курск (4712)77-13-04

Архангельск (8182)63-90-72 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61

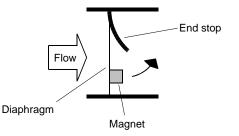
Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Калининград (4012)72-03-81 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04

Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Тверь (4822)63-31-35 Рязань (4912)46-61-64 Томск (3822)98-41-53 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Тюмень (3452)66-21-18 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31

Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тула (4872)74-02-29 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47 Казахстан (772)734-952-31 Таджикистан (992)427-82-92-69

http://ghm.nt-rt.ru || gmg@nt-rt.ru


Flow Switch LABO-XF-S

- Very short response time
- High overload protection
- Metering range 1:80
- Low pressure loss
- Compact design

Characteristics

A thin elastic diaphragm made of stainless steel, which covers the entire flow cross-section, is deflected by the flowing fluid, and thereby pushes against an arched end stop.

There is a plastic-coated magnet on the diaphragm. When there is a deflection, its magnetic field changes, and this is detected by a sensor outside the area of flow.

Flexible diaphragm made of stainless steel, with plastic-coated magnet.

The integrated converter / counter make available an electronic switching output (push-pull) with adjustable characteristics (minimum/maximum) and hysteresis, which responds when an adjustable limit is fallen short of or exceeded. If desired, the switching value can be set to the currently existing flow using "teaching".

Models with analog or pulse output are also available (see separate data sheets). Because the diaphragm only bends, and functions without a bearing, there is almost no friction effect. The movement therefore occurs practically free of hysteresis, and the switching point has very good reproducibility.

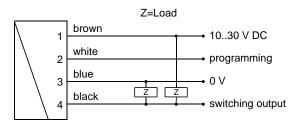
The diaphragm's low bulk results in a short response time. The almost complete covering of the flow cross-section in the neutral position enables a very low response threshold. As soon as the slightest flow exists, the diaphragm is of necessity deflected. The evaluation of the entire flow cross-section means that there are no problems when routing pipes. Run-in and run-out sections are not necessary.

Sensors and Instrumentation

The shaped end stop and the elastic properties of the diaphragm mean that even severe water hammer causes no damage. The low number of media contact parts guarantees reliable operation and a low tendency to contamination.

There are flanged connection pieces on the inlet and outlet; these are available in various nominal widths and materials. By removing the four bolts of the flange connection, it is simple to remove the measurement unit for servicing, while the connections remain in the pipework.

Technical data					
Sensor	dynamic diant-				
Nominal width	dynamic diaphragm DN 825				
	female thread G $^{1}/_{4}$ G 1,				
Process connection					
Switching ranges	optionally male thread or hose nozzle 1100 l/min (water)				
ennening rangee	for standard range see table "Ranges",				
	minimum value range 0.46 l/min				
	optionally available				
Measurement	Standard ranges				
accuracy	±3 % of the mean minimum 0.25 l/r				
	Minimum 0.25 l/r				
	±3 % of the measure	- J -			
	minimum 0.1 l/m				
Pressure loss	max. 0.5 bar at t	he end of the metering			
	range				
Pressure	Plastic construct	ion: PN 16 bar			
resistance	Full metal constr	uction: PN 100 bar			
Media temperature	0+70 °C				
	with high temperature option 0150 °C				
Ambient	0+70 °C				
temperature	00.00.00				
Storage temperature	-20+80 °C				
Materials	Body:	PPS.			
medium-contact	2003)	CW614N nickelled or			
		stainless steel 1.4404			
	Connections:	POM,			
		CW614N nickelled or			
	stainless steel 1.4404				
	Seals:	FKM			
	Diaphragm:	stainless steel 1.4031k			
	Magnet holder:	PPS .			
Mada alala ara a	Adhesive:	epoxy resin			
Materials, non- medium-contact	Sensor tube:	CW614N nickelled			
medium-contact	Adhesive:	epoxy resin stainless steel			
	Flange bolts	Full metal construction:			
		steel			
Supply voltage	1030 V DC				
Power	< 1 W (for no-loa	d outputs)			
consumption					
Switching output	transistor output				
		t circuits and polarity			
Disales	reversal) I _{out} = 10	U mA max.			
Display	yellow LED (On = Normal / C)ff – Alarm /			
	rapid flashing = p				
Electrical					
connection	for round plug connector M12x1, 4-pole				
Ingress protection	IP 67				
Weight	see table "Dimensions and weights"				
Conformity	CE				
· · · · ·	1				


Ranges

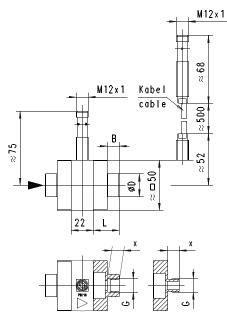
Nominal widt	Nominal width		Q _{max} recommended
DN 825	0	0.4 6.0	120
DN 825	•	1.0 15.0	
DN 10.0.25	•	1.0 25.0	
DN 15.0.25	•	1.0 50.0	
DN 20.0.25	•	1.0 80.0	
DN 25 *	0	1.0100.0	

* Inner pipe diameter \geq Ø22.5

Special ranges are available.

Wiring

Connection example: PNP NPN


Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.

The push-pull output) can as desired be switched as a PNP or an NPN output.

Sensors and Instrumentation

Dimensions and weights

Connection pieces

G	DN	L	В	X	ØD Metal / Plastic	Weight* kg Metal / plastic		
G ¹ / ₄	DN 8	26	12	12	22,5 / 33	0.245 / 0.055		
G ³ / ₈	DN 10					0.240 / 0.050		
G ¹ / ₂	DN 15	28	14	14	28,0 / 37	0.250 / 0.055		
G ³ / ₄	DN 20	30	16	16	35,0 / 42	0.270 / 0.060		
G 1	DN 25		-	18	-	0.400 / 0.085		
G ¹ / ₄ A	DN 8	26	-	12	-	0.230 / 0.045		
G ³ / ₈ A	DN 10		-		-	0.230 / 0.045		
G ¹ / ₂ A	DN 15	28	-	14	-	0.240 / 0.050		
G ³ / ₄ A	DN 20	30	-	16	-	0.235 / 0.050		
G 1 A	DN 25	32	-	18	-	0.235 / 0.050		
*Weights per connection, excluding bolts								

Body

Construction	Weight* kg
Plastic	ca. 0.100
Metal	ca. 0.400

*Weights incl. internal parts, sensor and bolts for connection pieces

Options

Through a range of options, the XF system is flexibly adaptable to very varied requirements.

Full metal construction

The standard version has a plastic body with a pressure resistance of 16 bar. A metalled body (nickelled brass) with a pressure resistance of 100 bar is optionally available. The higher operating pressure requires a combination with metal connection pieces. Switching value settings in the range 1..80 l/min are possible.

High temperature

If the full metal model with high temperature sensors is fitted, operation at media temperatures up to 150 °C is possible. Here, the primary sensor element is located in the housing of the measurement unit, while the converter / counter are located away from housing via a 50 cm long heat-resistant cable.

Note:Operation using the plastic body is also possible at temperatures greater than 70 $^{\circ}$ C. However, it should be noted that this reduces the stability to pressure .

Resistance to backflows

With forward flows, the diaphragm pushes against an arched end stop, and is undamaged by flow rates which are significantly higher than the intended metering range, or by water hammer. For flows or pressure surges in the reverse direction, in the standard version the diaphragm pushes against a circumferential plastic support ring, and almost completely closes the flow cross-section. This causes pressure to build up which can damage the diaphragm. In applications where such conditions can arise (e.g. from elastic hoses to the rear of the measuring equipment) the use of the "resistance to backflows" option is recommended. Here, the plastic support ring is replaced by another arched end stop made of stainless steel, so that the diaphragm is provided with the same overload and pressure surge resistance in the reverse direction as in the forward direction. However, a switching value setting in the reverse direction is not possible.

The "resistance to backflows" option is mandatory for bodies made of metal.

Minimum value measurement

For switching ranges up to 6 l/min, the sensitivity and therefore the stability of the measuring system can be increased, and so switching value settings even less than 1 l/min, i.e. from 0.4 l/min become possible. For this, the sensor is installed on the opposite side of the housing. This option is not available for metal housings and models with resistance to backflows.

Handling and operation

Installation

The device is supplied with connection pieces mounted. These may be removed for the installation in the pipework.

The sensor can be operated in any location. However, the lowest tendency to contamination occurs when the diaphragm swings from bottom to top. If possible. installation should therefore be made either with flow from bottom to top, or horizontal. In the latter case, the sensor in the minimum value range model (max. 6 l/min, see options) should point downwards; for all other versions it should point upwards. Factory adjustment is made with flow horizontal.

It should be ensured that the sensor is installed in the direction of the flow arrow. In spite of its low bulk, the diaphragm is very robust; nevertheless it should not be buckled or compressed through force during installation or removal.

The bolts in the housing pass all the way through it, and must be completely removed if the sensor body is replaced. Afterwards, as

Sensors and Instrumentation

normal with a flanged part, the body can be pulled out without loosening the screw connections.

Note

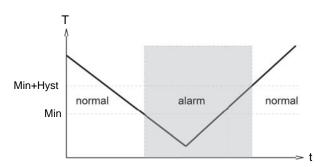
The switching value can be programmed by the user via "teaching". If desired, programmability can be blocked by the manufacturer.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

Operation and programming

The switching value is set as follows:

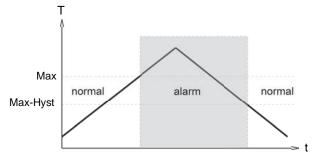
- Apply the flow rate to be set to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

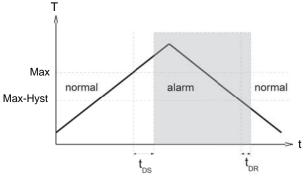

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.

In order to avoid the need to transit to an undesired operating status during the teach-in, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.

Example: The switching value should be set to 80 l/min. However, it is possible only to reach 60 l/min without problems. In this case, the device would be set using a teach-offset of +20 l/min. At a flow rate of 60 l/min in the process, teaching would then store a value of 80 l/min.

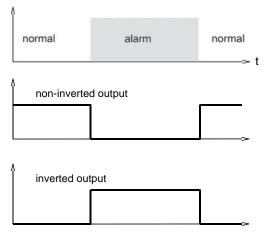
The limit switch can be used to monitor minimal or maximal.


With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

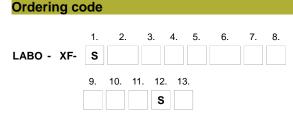

HONSBERG

Product Information

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.



A switchover delay time (t_{DS}) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.


In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.

In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V, so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V, and in the alarm state it is at the level of the supply voltage.

A Power-On-Delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

Sensors and Instrumentation

1.	Switc	hinc	output (Limit switch)								
••	S		push-pull (compatible wi	th P	NP	an	d N	IPN	I)		
2.	Nomi	nal v				un			•)		
	008		DN 8-G ¹ / ₄				_				-
	010		DN 10 - G ³ / ₈								
	015		DN 15 - G ¹ / ₂								
	020		DN 20 - G ³ / ₄		-						
	025		DN 25 - G 1		1						
3.			connection		l						
•	G		female thread	_							
	A	0	male thread	_							
	Т		hose nozzle	_							
4.	-		on material	_							
	M	COLIN	CW614N nickelled	_							
	P	0	POM	_							
	ĸ		stainless steel	-							
5.	Body			_							
J .	Q	mat	PPS	_				ŀ			-
	M	0	CW614N nickelled	_				ŀ			1
	K		stainless steel	_				ł			ł
6.			range	_	1			ł			l
э.			minimum value				_	_			+
	006	0	0.4 6.0 l/min	•	•	•	•	•			1
	015		1.0 15.0 l/min	•	•	•	•	•	•	•	,
	025		1.0 25.0 l/min	•	•	•	•		•	•	1
	050		1.0 50.0 l/min	•	•	•			•	•	,
	080		1.0 80.0 l/min	•	•			_	•	•	,
	100	0	1.0100.0 l/min	•					•	•	1
7.	Seal r										+
	V		FKM							İ.	Ĺ
	E	0	EPDM								
	N		NBR								
8.	Resis		e to backflows								1
	0		without resistance to bac	ckflo	ws						1
	R	0	with resistance to backfl		-				•	•	1
9.	Progr										+
	N		cannot be programmed	(no t	ead	chir	na)				İ
	P	0	programmable (teaching possible)								
10.	Switching function										
	L		minimum-switch								
	H		maximum-switch								
11.		hinc	signal								
	0		standard								
	1	0	inverted								
12.	-		connection								
	S		for round plug connector	r M1	2x1	, 4	-po	le			
13.	Optio	nal			-	, .		-			1
	-		150 °C version (with 300) mm	1 (2	ahla	ڊ د				T
	Н	0		<i>i</i> 11111	1 60	JUI	•,				

Sensors and Instrumentation

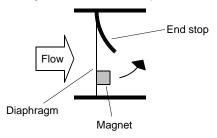
Product Information

Options	
Switching delay period (0.099.9 s) (from Normal to Alarm)	s. S
Switch-back delay period (0.099.9 s) (from Alarm to Normal)	. S
Power-On-Delay period (099 s) (after connecting the supply, time during which the switching output is not activated)	S
Switching output fixed at	l/min
Switching hysteresis Standard = 2 % of the metering range	%
Teach-offset (in percent of the metering range) Standard = 0 %	%

Further options available on request.

Accessories

Cable/round plug connector (KB...) see additional information "Accessories"
Device configurator ECI-1


Flow Transmitter LABO-XF-I / U / F / C

- Very short response time
- High overload protection
- Metering range 1:100
- Low pressure loss
- Compact design
- 0..10 V, 4..20 mA, frequency/pulse output, complete configurable

Characteristics

A thin elastic diaphragm made of stainless steel, which covers the entire flow cross-section, is deflected by the flowing fluid, and thereby pushes against an arched end stop.

There is a plastic-coated magnet on the diaphragm. When there is a deflection, its magnetic field changes, and this is detected by a sensor outside the area of flow.

Flexible diaphragm made of stainless steel, with plastic-coated magnet.

Because the diaphragm only bends, and functions without a bearing, there is almost no frictional effect. The movement therefore occurs practically free of hysteresis, and the test results have very good reproducibility. The diaphragm's low bulk results in a short response time. The almost complete covering of the flow cross-section in the neutral position produces very high start-up sensitivity. As soon as the slightest flow exists, the diaphragm is of necessity deflected. The evaluation of the entire flow cross-section means that there are no problems when routing pipes. Run-in and run-out sections are not necessary. The shaped end stop and the elastic properties of the diaphragm mean that even severe water

Sensors and Instrumentation

hammer causes no damage. The low number of media contact parts guarantees reliable operation and a low tendency to contamination.

There are flanged connection pieces on the inlet and outlet; these are available in various nominal widths and materials. By removing the four bolts of the flange connection, it is simple to remove the measurement unit for servicing, while the connections remain in the pipework.

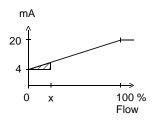
The LABO-XF electronics make various output signals available:

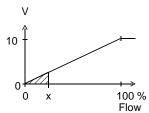
- Analog signal 0/4..20 mA (LABO-XF-I)
- Analog signal 0/2..10 V (LABO-XF-U)
- Frequency signal (LABO-XF-F) or
- Value signal Pulse / x Litres (LABO-XF-C)

A model with switching output is also available.

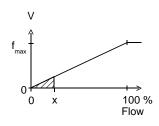
If desired, the range end value can be set to the currently existing flow using "teaching".

Technical data					
Sensor	dynamic diaphrag	gm			
nominal width	DN 825				
Process	female thread G				
connection		nread or hose nozzle			
Metering ranges	for standard rang minimum value ra optionally availab	1100 l/min (water) for standard ranges, see table "Ranges", minimum value range 0.46 l/min optionally available			
Measurement accuracy	Standard ranges: ±3 % of the measured value, minimum 0.25 l/min Minimum value range: ±3 % of the measured value, minimum 0.1 l/min				
Pressure loss	max. 0.5 bar				
Pressure	Plastic construction: PN 16 bar				
resistance	Full metal construction: PN 100 bar				
Media temperature	0+70 °C with high temperature option 0150 °C				
Ambient temperature	0+70 °C				
Storage temperature	-20+80 °C				
Materials medium-contact	Body:	PPS, CW614N nickelled or stainless steel 1.4404			
	Connections: POM, CW614N nickelled or stainless steel 1.4404				
	Seals:	FKM			
	Diaphragm: Magnet holder:	stainless steel 1.4031k PPS			
	Adhesive:	epoxy resin			
Materials, non-	Sensor tube:	CW614N nickelled			
medium-contact	Adhesive:	epoxy resin			
	Flange bolts:	stainless steel full metal construction: steel			
Supply voltage	1030 V DC at voltage output 10 V: 1530 V DC				
Power consumption	< 1 W (for no-load	d outputs)			




Output data:	all outputs are resistant to short circuits and reversal polarity protected
Current output:	420 mA (020 mA available on request)
Voltage output:	010 V (210 V available on request) output current max. 20 mA
Frequency output:	transistor output "push-pull" I _{out} = 100 mA max. output frequency depends on metering range, standard is 500 Imp/I (corresponds to 833.3 Hz at 100 I/min) minimum value range: 5000 Imp/I (corresponds to 500 Hz at 6 I/min) (other frequencies available on request)
Pulse output:	transistor output "push-pull" I _{out} = 100 mA max. pulse width 50 ms pulse per volume is to be stated
Display	yellow LCD shows operating voltage (LABO-XF-I / U) or output status (LABO-XF-F / C) or (rapid flashing = programming)
Electrical connection	for round plug connector M12x1, 4-pole
Ingress protection	IP 67
Weight	see table "Dimensions and weights"
Conformity	CE

Signal output curves

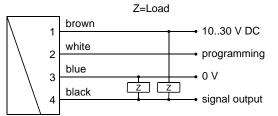

Current output

Voltage output

 f_{max} selectable in the range of up to 2000 Hz

Other characters on request.

Sensors and Instrumentation

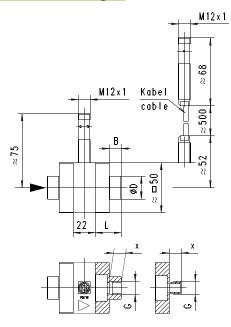

Ranges

Nominal wid	Nominal width		Nominal width Switching range I/min H ₂ O		Q _{max} recommended
DN 825	0	0.4 6.0	120		
DN 825	•	1.0 15.0			
DN 1025	٠	1.0 25.0			
DN 1525	٠	1.0 50.0			
DN 2025	•	1.0 80.0			
DN 25 *	0	1.0100.0			

* Inner pipe diameter ≥ Ø22.5

Special ranges are available.

Wiring


Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet. It is recommended to use shielded wiring.

The push-pull-output) of the frequency output version can as desired be switched as a PNP or an NPN output.

Dimensions and weights

Connection pieces

G	DN	L	В	X	ØD Metal / Plastic	Weight* kg Metal / plastic
G ¹ / ₄	DN 8	26	12	12	22.5 / 33	0.245 / 0.055
G ³ / ₈	DN 10					0.240 / 0.050
G ¹ / ₂	DN 15	28	14	14	28.0 / 37	0.250 / 0.055
G ³ / ₄	DN 20	30	16	16	35.0 / 42	0.270 / 0.060
G 1	DN 25		-	18	-	0.400 / 0.085
G ¹ / ₄ A	DN 8	26	-	12	-	0.230 / 0.045
G ³ / ₈ A	DN 10		-		-	0.230 / 0.045
G ¹ / ₂ A	DN 15	28	-	14	-	0.240 / 0.050
G ³ / ₄ A	DN 20	30	-	16	-	0.235 / 0.050
G 1 A	DN 25	32	-	18	-	0.235 / 0.050

*Weights per connection, excluding bolts

Body

Construction	Weight* kg
Plastic	ca. 0.100
Metal	ca. 0.400

*Weights incl. internal parts, sensor and bolts for connection pieces

Options

Through a range of options, the XF system is flexibly adaptable to very varied requirements:

Full metal construction

The standard version has a plastic body with a pressure resistance of 16 bar. A metalled body (nickelled brassor stainless steel) with a pressure resistance of 100 bar is optionally available. The higher operating pressure requires a combination with metal connection pieces.

Measurements in the range 1..100 l/min are possible.

Sensors and Instrumentation

High temperature

If the full metal model with high temperature sensors is fitted, operation at media temperatures up to 150 °C is possible. Here, the primary sensor element is located in the housing of the measurement unit, while the converter / counter are located away from housing via a 50 cm long heat-resistant cable.

Resistance to backflows

With forward flows, the diaphragm pushes against an arched end stop, and is undamaged by flow rates which are significantly higher than the intended metering range, or by water hammer. For flows or pressure surges in the reverse direction, in the standard version the diaphragm pushes against a circumferential plastic support ring, and almost completely closes the flow cross-section. This causes pressure to build up which can damage the diaphragm. In applications where such conditions can arise (e.g. from elastic hoses to the rear of the measuring equipment) the use of the "resistance to backflows" option is recommended. Here, the plastic support ring is replaced by another arched end stop made of stainless steel, so that the diaphragm is provided with the same overload and pressure surge resistance in the reverse direction as in the forward direction. However, a measurement in the reverse direction is not possible.

The "resistance to backflows" option is mandatory for bodies made of metal.

Minimum value measurement

For metering ranges up to 6 l/min, the sensitivity of the measuring system can be increased, and so measurements even less than 1 l/min, i.e. from 0.4 l/min become possible. For this, the sensor is installed on the opposite side of the housing. This option is not available for metal housings and models with resistance to backflows.

Handling and operation

Installation

The device is supplied with connection pieces mounted. These may be removed for the installation in the pipework.

The sensor can be operated in any location. However, the lowest tendency to contamination occurs when the diaphragm swings from bottom to top. If possible. installation should therefore be made either with flow from bottom to top, or horizontal. In the latter case, the sensor in the minimum value range model (max. 6 l/min, see options) should point downwards; for all other versions it should point upwards. Factory adjustment is made with flow horizontal. It should be ensured that the device is installed in the direction of the flow arrow. In spite of its low bulk, the diaphragm is very robust; nevertheless it should not be buckled or compressed through force during installation or removal.

The bolts in the housing pass all the way through it, and must be completely removed if the sensor body is replaced. Afterwards, as normal with a flanged part, the body can be pulled out without loosening the screw connections.

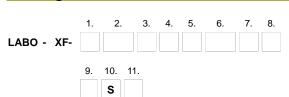
Note

The metering range end value can be programmed by the user via "teaching". Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed. The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment. The teaching option is not available for the pulse output version.

Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.


The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as an indicator of operating voltage (for analog output) or of switching status (for frequency or pulse output).

To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.

Example: The end of the metering range should be set to 80 l/min. However, it is possible only to reach 60 l/min without problems. In this case, the device would be set using a teach-offset of +20 l/min. At a flow rate of 60 l/min in the process, teaching would then store a value of 80 l/min.

Sensors and Instrumentation

Ordering code

0	_	\cap	nti	ion
\mathbf{J}	=	U	μι	OLI

	Cierrel		4 may 1 4				
1.	Signal	ou					
	1		current output 420 mA				
	U		voltage output 010 V				
	F		frequency output (see "Ordering information")				
_	С.	_	pulse output (see "Ordering information")				
2.	nomina	al v					
	008		DN 8-G ¹ / ₄				
	010		DN 10 - G ³ / ₈				
	015		DN 15 - G $\frac{1}{2}$				
	020		DN 20 - G ³ / ₄				
	025		DN 25 - G 1				
3.		ss c	connection				
	G	~	female thread				
	A		male thread				
	Т		hose nozzle				
4.		ctio	on material				
	М	_	CW614N nickelled				
	Р		POM				
	K		stainless steel				
5.	Body r	nat					
	Q		PPS				
	М	0	CW614N nickelled				
	K	0	stainless steel				
	Metering range						
6.	Meteri	ng					
6.	Meterii 006	ng O	minimum value				
6.	006	-	minimum value 0.4 6.0 l/min				
6.	006 015	-	minimum value • • • 0.4 6.0 l/min • • 1.0 15.0 l/min • •				
6.	006 015 025	-	minimum value • • • 0.4 6.0 l/min • 1.0 15.0 l/min • 1.0 25.0 l/min •				
6.	006 015 025 050	-	minimum value • • • 0.4 6.0 l/min • 1.0 15.0 l/min • 1.0 25.0 l/min • 1.0 50.0 l/min •				
6.	006 015 025 050 080	0	minimum value • <				
	006 015 025 050 080 100	0	minimum value • <				
6. 7.	006 015 025 050 080 100 Seal m	0	minimum value • <				
	006 015 025 050 080 100 Seal m V	0 o	minimum value • <				
	006 015 025 050 080 100 Seal m V E)) nate	minimum value • <				
7.	006 015 025 050 080 100 Seal m V E N) atte	minimum value • <				
	006 015 025 050 080 100 Seal m V E N Resist) atte	minimum value • <				
7.	006 015 025 050 080 100 Seal m V E N Resist O) aate	minimum value • <				
7.	006 015 025 050 080 100 Seal m V E N Resist O R) anc	minimum value • <				
7.	006 015 025 050 080 100 Seal m V E N Resist O R Progra) anc	minimum value • <				
7.	006 015 025 050 080 100 Seal m V E Seal m V E N Resist O R Progra N) aate	minimum value • <				
7.	006 015 025 050 080 100 Seal m V E Seal m V E N Resist O R Progra N P) nate	minimum value • <				
7.	006 015 025 050 080 100 Seal m V E Seal m V E R Resist O R Progra N P Electri) nate	minimum value • <				
7. 8. 9.	006 015 025 050 080 100 Seal m V E Seal m V Resist O R Progra N P Electri S) aate	minimum value • <				
7.	006 015 025 050 080 100 Seal m V E Seal m V E R Resist O R Progra N P Electri) aate	minimum value • <				
7. 8. 9.	006 015 025 050 080 100 Seal m V E Seal m V Resist O R Progra N P Electri S	o aate o anc anc cal	minimum value 0.4. 6.0 l/min 1.0. 15.0 l/min 1.0. 25.0 l/min 1.0. 50.0 l/min 1.0. 80.0 l/min 1.0. 100.0 l/min 1.0				

HONSBERG

Sensors and Instrumentation

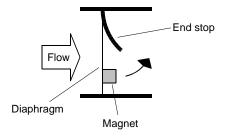
Product Information

Required ordering information

For LABO-XF-F: Output frequency at full scale Maximum value: 2,000 Hz	Hz
For LABO-XF-C: For the pulse output version, the volume (with unit) which will correspond to one pulse must be	
Volume per pulse (numerical value)	
Volume per pulse (unit)	
Options	
Special range for analog output: <= Metering range (standard=metering range)	l/min
Special range for frequency output: <= Metering range (standard=metering range)	l/min
Power-On-Delay period (099 s) (time after applying power during which the outputs are not activated or set to defined values)	s
Further options available on request.	

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Converter / counter OMNI-TA
- Device configurator ECI-1


Flow Transmitter / Switch FLEX-XF

- Universal flow sensor with rapid dynamic diaphragm
- Switching output and/or analog output (4..20 mA or 0..10 V)
- Wide measuring range
- Ingress protection IP 67
- Cable outlet infinitely rotatable
- Robust stainless steel housing

Characteristics

A thin elastic diaphragm made of stainless steel, which covers the entire flow cross-section, is deflected by the flowing fluid, and thereby pushes against an arched end stop.

There is a plastic-coated magnet on the diaphragm. When there is a deflection, its magnetic field changes, and this is detected by a sensor outside the area of flow.

Flexible diaphragm made of stainless steel, with plastic-coated magnet.

Because the diaphragm only bends, and functions without a bearing, there is almost no frictional effect. The movement therefore occurs practically free of hysteresis, and the test results have very good reproducibility. The diaphragm's low bulk results in a rapid response time.

The almost complete covering of the flow cross-section in the neutral position allows very high initial sensitivity. As soon as the slightest flow exists, the diaphragm is of necessity deflected. The evaluation of the entire flow cross-section means that there are no problems when routing pipes. Run-in and run-out sections are not necessary.

Sensors and Instrumentation

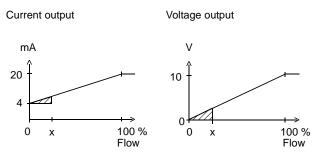
The shaped end stop and the elastic properties of the diaphragm mean that even severe water hammer causes no damage.

The low number of media contact parts guarantees reliable operation and a low tendency to contamination.

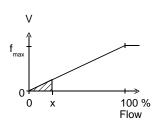
The connection pieces for both sides can be freely selected, and are flanged on. Various nominal widths and materials are available. By removing the four bolts of the flange connection, it is simple to remove the measurement unit for servicing, while the connections remain in the pipework.

The integrated FLEX-XF converter / counter have an analog output (4..20 mA or 0..10 V) and a transistor output (push-pull). The transistor output can be used as a limit switch for monitoring of minimal or maximal, but also as a frequency output.

Technical data


Sensor	dynamic diaphra	gm		
nominal width	DN 825			
Process	female thread G ¹ / ₄ G 1,			
connection	optionally male thread or hose nozzle			
Metering ranges	1100 l/min (water) for standard ranges, see table "Ranges", minimum value range 0.46 l/min optionally available			
Accuracy	standard ranges: ±3 % of the measured value, minimum 0.25 l/min minimum value range: ±3 % of the measured value, minimum 0.1 l/min			
Pressure loss	max. 0.5 bar at the end of the metering range			
Pressure resistance	plastic construction:PN 16 barfull metal construction:PN 100 bar			
Media temperature	0+70 °C with high temperature option 0+150 °C			
Ambient temperature	0+70 °C			
Storage temperature	-20+80 °C			
Materials medium-contact	Body:	PPS, CW614N nickelled or stainless steel 1.4404		
	Connections:	POM, CW614N nickelled or stainless steel 1.4404		
	Seals: Diaphragm: Magnet holder:	FKM stainless steel 1.4031k PPS		
	Adhesive:	epoxy resin		
Materials, non- medium-contact	Electronic housing:	1.4305 / CW614N nickelled		
	Plug:	PA6.6 PA6.6		
	Clip: Flange bolts:	rao.o stainless steel full metal construction: steel		
Supply voltage	1830 V DC			
Power consumption	< 1 W (for no-loa	ad outputs)		
Analog output	420 mA / load 500 Ohm max. or 010 V / load min. 1 kOhm			

HONSBERG


Product Information

Switching output	transistor output "push-pull" (resistant to short circuits and polarity reversal) I _{out} = 100 mA max.
Hysteresis	2 % F.S., for minswitch, position of the hysteresis above the limit value, and for maxswitch, below the limit value
Display	yellow LED (On = Normal / Off = Alarm / rapid flashing = Programming)
Electrical connection	for round plug connector M12x1, 4-pole
Ingress protection	IP 67
Weight	see table "Dimensions and weights"
Conformity	CE

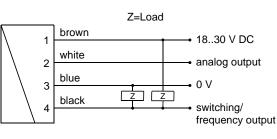
Signal output curves

Frequency output

 f_{max} selectable in the range of up to 2000 Hz

Other characters on request.

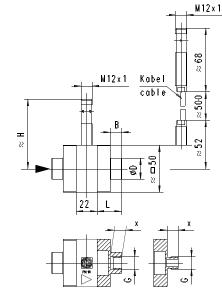
Ranges


Nominal wid	Nominal width		Q _{max} recommended
DN 825	0	0.4 6.0	120
DN 825	•	1.0 15.0	
DN 1025	•	1.0 25.0	
DN 1525	•	1.0 50.0	
DN 2025	•	1.0 80.0	
DN 25 *	0	1.0100.0	

* Inner pipe diameter ≥ Ø22.5

Special ranges are available.

Sensors and Instrumentation


Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds with the data sheet.

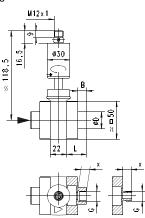
It is recommended to use shielded wiring.

Dimensions and weights

For high temperatures with extended electronic

Connection pieces

G	DN	L	В	Х	ØD	Weight*
					Metal / Plastic	kg Metal / plastic
G ¹ / ₄	DN 8	26	12	12	22.5/33	0.245 / 0.055
G ³ / ₈	DN 10					0.240 / 0.050
G ¹ / ₂	DN 15	28	14	14	28.0/37	0.250 / 0.055
G ³ / ₄	DN 20	30	16	16	35.0 / 42	0.270 / 0.060
G 1	DN 25		-	18	-	0.400 / 0.085
G ¹ / ₄ A	DN 8	26	-	12	-	0.230 / 0.045
G ³ / ₈ A	DN 10		-		-	0.230 / 0.045
G ¹ / ₂ A	DN 15	28	-	14	-	0.240 / 0.050
G ³ / ₄ A	DN 20	30	-	16	-	0.235 / 0.050
G 1 A	DN 25	32	-	18	-	0.235 / 0.050


* weights per connection, excluding bolts Other interfaces on request

Body

Construction	Weight*	
	kg	
Plastic	ca. 0.210	
Metal	ca. 0.490	
Metal (with spacer)	ca. 0.560	

*Weights incl. internal parts, sensor and bolts for

connection pieces

Options

Through a range of options, the XF system is flexibly adaptable to very varied requirements:

Full metal construction

The standard version has a plastic body with a pressure resistance of 16 bar. A metalled body (nickelled brass) with a pressure resistance of 100 bar is optionally available. The higher operating pressure requires a combination with metal connection pieces. Measurements and switching value settings in the range 1..80 l/min are possible.

High temperature

If the full metal model is fitted with high temperature sensors and a gooseneck, operation at media temperatures up to 150 $^{\circ}\mathrm{C}$ is possible.

Note: Operation using the plastic body is also possible at temperatures greater than 70 °C. However, it should be noted that this reduces the stability to pressure .

Resistance to backflows

With forward flows, the diaphragm pushes against an arched end stop, and is undamaged by flow rates which are significantly higher than the intended metering range, or by water hammer. For flows or pressure surges in the reverse direction, in the standard version the diaphragm pushes against a circumferential plastic support ring, and almost completely closes the flow cross-section. This causes pressure to build up which can damage the diaphragm. In applications where such conditions can arise (e.g. from elastic hoses to the rear of the measuring equipment) the use of the "resistance to backflows" option is recommended.

Here, the plastic support ring is replaced by another arched end stop made of stainless steel, so that the diaphragm is provided with the same overload and pressure surge resistance in the reverse direction as in the forward direction. However, a measurement or setting of switching value in the reverse direction is not possible. The "resistance to backflows" option is mandatory for bodies made of metal.

Sensors and Instrumentation

Minimum value measurement

For metering ranges up to 6 l/min, the sensitivity of the measuring system can be increased, and so measurements even less than 1 l/min, i.e. from 0.4 l/min become possible. For this, the sensor is installed on the opposite side of the housing. This option is not available for metal housings and models with resistance to backflows.

Handling and operation

Installation

The device is supplied with connection pieces mounted. These may be removed for the installation in the pipework.

The sensor can be operated in any location. However, the lowest tendency to contamination occurs when the diaphragm swings from bottom to top (see "Principles Drawing"). If possible. installation should therefore be made either with flow from bottom to top, or horizontal. Factory adjustment is made with flow horizontal.

It should be ensured that the sensor is installed in the direction of the flow arrow. In spite of its low bulk, the diaphragm is very robust; nevertheless it should not be buckled or compressed through force during installation or removal.

The bolts in the housing pass all the way through it, and must be completely removed if the sensor body is replaced. Afterwards, as normal with a flanged part, the body can be pulled out without loosening the screw connections.

The electronics housing is connected to the primary sensor, and cannot be removed by the user. After installation, the electronic head can be turned to align the cable outlet.

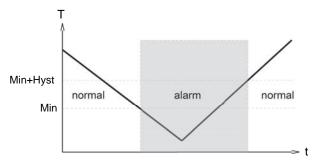
Programming

The electronics contain a magnetic contact, with the aid of which different parameters can be programmed. Programming takes place when a magnet clip is applied for a period between 0.5 and 2 seconds to the marking located on the label. If the contact time is longer or shorter than this, no programming takes place (protection against external magnetic fields).

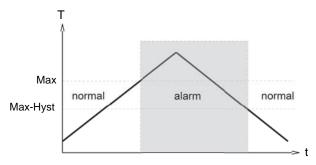
After the programming ("teaching"), the clip can either be left on the device, or removed to protect data.

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.

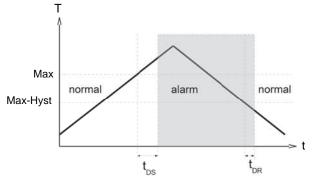
In order to avoid the need to transit to an undesired operating status during "teaching", the device can be provided ex-works with a "teach-offset". The "teach-offset" value is added to the currently measured value before saving (or is subtracted if a negative value is entered).


Example: The switching value is to be set to 70 % of the metering range, because at this flow rate a critical process status is to be notified. However, only 50% can be achieved without danger. In this case, the device would be ordered with a "teach-offset" of +20 %. At 50 % in the process, a switching value of 70 % would then be stored during "teaching".

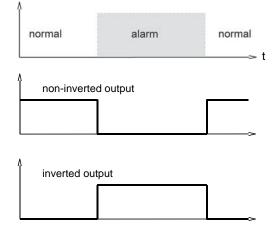
Normally, programming is used to set the limit switch. However, if desired, other parameters such as the end value of the analog or frequency output may also be set.



The limit switch can be used to monitor minimal or maximal.


With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is again exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.


A switchover delay time (t_{DS}) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.

In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V, so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V, and in the alarm state it is at the level of the supply voltage.

Sensors and Instrumentation

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

Ordering code 4. 5. 6. 7. 8. 1. 2. 3. FLEX - XF-9. 10. 11. $\mathbf{O} = \mathbf{Option}$ 1. Nominal width 800 DN 8-G 1/4 DN 10 - G ³/₈ 010 DN 15 - G 1/2 015 DN 20 - G ³/₄ 020 DN 25 - G 1 025 2. Process connection female thread G **O** male thread A т O hose nozzle 3. Connection material Μ CW614N nickelled O POM Ρ Κ O stainless steel 4. Body material PPS Q O CW614N nickelled Μ O stainless steel Κ Metering range 5. minimum value 0 006 • . 0.4.. 6.0 l/min 015 • 1.0.. 15.0 l/min • • 025 1.0.. 25.0 l/min • • • • 050 1.0.. 50.0 l/min • • • • 080 1.0.. 80.0 l/min • • • . 100 O 1.0..100.0 l/min . • . 6. Seal material V FKM O EPDM Е Ν O NBR 7. Resistance to backflows 0 without resistance to backflows R **O** with resistance to backflows • • 8. Analog output current output 0/4..20 mA I U O voltage output 0/2..10 V 9. Switching function L minimum-switch Н maximum-switch frequency output R 10. Switching signal standard 0 **O** inverted 11. Optional 150 °C version D 0 • (with spacer, only for metal housing)

Sensors and Instrumentation

Options

Special range for analog output: <= Metering range (Standard = Metering range)		l/min
Special range for frequency output: <= Metering range (Standard = Metering range)		l/min
End frequency (max. 2000 Hz)		Hz
Switching delay (from normal to alarm)	·	S
Switchback delay (from alarm to normal)		S
Power-On-Delay period (099 s) (time after power on, during which the outputs are not actuated)		S
Switching output fixed		l/min
Special hysteresis (standard = 2 % of end value)		%

If the field is not completed, the standard setting is selected automatically.

Accessories

.

.

- Cable/round plug connector (KB...) . see additional information "Accessories"
- Device configurator ECI-1 •

Архангельск (8182)63-90-72 Иваново (4932)77-34-06 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Курск (4712)77-13-04

Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61

Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Калининград (4012)72-03-81 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04

Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Тюмень (3452)66-21-18 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31

Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Ульяновск (8422)24-23-59 **y**¢a (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47 Казахстан (772)734-952-31 Таджикистан (992)427-82-92-69